If it's not what You are looking for type in the equation solver your own equation and let us solve it.
24x^2+26x-35=0
a = 24; b = 26; c = -35;
Δ = b2-4ac
Δ = 262-4·24·(-35)
Δ = 4036
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{4036}=\sqrt{4*1009}=\sqrt{4}*\sqrt{1009}=2\sqrt{1009}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(26)-2\sqrt{1009}}{2*24}=\frac{-26-2\sqrt{1009}}{48} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(26)+2\sqrt{1009}}{2*24}=\frac{-26+2\sqrt{1009}}{48} $
| 9=3n=33 | | 3=2v | | 9x+111=119 | | 1/2y+6=1/9y | | -2x+5=123 | | -9n=10 | | 3x/2+5/3=-7x/4 | | 7x+2=4x+28 | | 9x=1/2x^2+40 | | 52/x=-6,5 | | 3x-(2x+1)=-12 | | x/4=112,5 | | 4x^2-13=163 | | 240=112-2(12x+16) | | p^2-4p+100=0 | | (w-4)^2+3=15 | | 34/x=8,5 | | x^2-12x+36=-2 | | x+1/5(x-1)=1 | | 5k-4-2k+1=8k+2 | | 10x+1=4,170 | | x*x*x-5x=60 | | 94+2x=122 | | 3n+18=8n-5 | | -8(x-8)=4x+36 | | 2m+1=3(m-1.8) | | 60/5(7-x)=6 | | 3x+70+x+10=180 | | 35-5x=1440 | | 7a+5-3a+1=2a+2 | | -11=3(y-5)-5y | | X2+4x=6 |